
Physical File Organization and Indexing

www.pdbmbook.com

http://www.pdbmbook.com/

Introduction

• Storage Hardware and Physical Database Design

• Record Organization

• File Organization

2

Storage Hardware and Physical Database Design

• The Storage Hierarchy

• Internals of Hard Disk Drives

• From Logical Concepts to Physical Constructs

3

The Storage Hierarchy

• Computer memory hierarchy

– high speed memory, expensive and limited in capacity at the top

– slower memory, relatively cheap and larger in size at the bottom

4

The Storage Hierarchy

• Primary Storage (a.k.a. volatile memory)

– Central Processing Unit (CPU): executes mathematical
and logical processor operations

– cache memory operates at nearly same speed as CPU

– central storage (a.k.a. internal memory, main memory):
consists of memory chips (also called Random Access
Memory, or RAM) of which the performance is
expressed in nanoseconds

– contains database buffer and runtime code of the
applications and DBMS

5

The Storage Hierarchy

• Secondary Storage

– persistent storage media

– Hard disk drive (HDD) and solid state drives (SSD)
based on flash memory

– contains physical database files

6

The Storage Hierarchy

• Primary and secondary storage divided by I/O
boundary

• Exchange of data between secondary storage and
primary storage is called I/O (input/output) and is
supervised by the operating system

• Still lower in the hierarchy: optical drives (e.g.,
rewritable DVD, Blu-ray) and tape

• In what follows: hard disk drive as the storage
medium!

7

Internals of Hard Disk Drives

• Hard Disk Drive (HDD) stores data on circular platters,
which are covered with magnetic particles

• A HDD also contains a hard disk controller

• HDDs are directly accessible storage devices (DASDs)

• Platters are secured on a spindle, which rotates at a
constant speed

• Read/write heads can be positioned on arms, which are
fixed to an actuator

8

Internals of Hard Disk Drives

9

Internals of Hard Disk Drives

• By combining disk rotation with actuator movement, each
individual section of the disk is directly reachable

• Magnetic particles on platters are organized in concentric
circular tracks, with each track consisting of sectors

• Sector is the smallest addressable unit on hard disk drive

– traditionally: 512 bytes; recently: 4096 bytes

• A set of tracks, with the same diameter, is called a cylinder

• Disk blocks (aka clusters, pages, allocation units) consist of 2
or more physically adjacent sectors

10

Internals of Hard Disk Drives

• Reading from a block, or writing to a block implies

– positioning the actuator (seek time)

– wait until the desired sector has rotated under the read/write
head (rotational delay, latency)

• Transfer time depends on block size, density of magnetic
particles and rotation speed of disks

• Response time = service time + queueing time

• Service time = seek time + rotational delay + transfer time

11

Internals of Hard Disk Drives

• Physical file organization can be optimized to
minimize expected seek time and rotational delay

• Trba refers to expected time to retrieve/write disk
block independently of previous read/write:
Trba = Seek + ROT/2 + BS/TR

• Tsba refers to expected time to sequentially retrieve
disk block with R/W head already in correct
position: Tsba = ROT/2 + BS/TR

• Note: block size (BS), rotation time (ROT) and
transfer rate (TR) 12

Internals of Hard Disk Drives

• Trba = 8.9 ms + 4.167 ms + 0.026 ms = 13.093 ms

• Tsba = 4.167 ms + 0.026 ms = 4.193 ms

13

Average seek time 8.9 ms

Spindle speed 7200 rpm

Transfer rate 150 MBps

Block size 4096 bytes

From Logical Concepts to Physical Constructs

• Physical database design: translate logical data model into
internal data model (a.k.a. physical data model)

• Trade-off between efficient update/retrieval and efficient
use of storage space

• Focus on physical organization of structured, relational
data!

14

From Logical Concepts to Physical Constructs

15

Logical data model

(general terminology)

Logical data model

(relational setting)

Internal data model

Attribute type and attribute Column name and (cell) value Data item or field

(Entity) record Row or tuple Stored record

(Entity) record type Table or relation Physical file or data set

Set of (entity) record types Set of tables or relations Physical database or stored database

Logical data structures Foreign keys Physical storage structures

From Logical Concepts to Physical Constructs

16

SuppName

Supplier PurchaseOrder

SuppID

SuppAddress

PODate

PONo

Conceptual data model

Logical data model

Supplier (SuppID, SuppName, SuppAddress)

PurchaseOrder (PONo, PODate, SuppID)

Internal data model

(0..n)(1..1)

Supplier1 POrd05 POrd06 POrd13

Supplier5 POrd02 POrd03 POrd20

Supplier3 POrd01 POrd14

Supplier1

Supplier3

Supplier5

…

Record Organization

• Record organization refers to organization of data
items into stored records

• Physical implementation of data item is a series of
bits

• Common techniques

– relative location

– embedded identification

– pointers and lists

17

Record Organization

• Relative Location

– simplest and most widespread

–data items that represent attributes of same
entity are stored on physically adjacent
addresses

– attribute types determined by relative ordering

18

Record Organization

19

Record Organization

• Embedded Identification

–data items representing attributes always
preceded by attribute type

–only non-empty attributes of record included

–missing attributes not a problem and no need to
store attributes in fixed order to identify them

– similar to XML and JSON

20

Record Organization

• Pointers and Lists

– ideal for dealing with variable length records (due to
e.g. variable length data type, multivalued attribute
type, optional attribute type, etc.)

21

Record Organization

• Blocking factor (BF) indicates how many records
are stored in single disk block

• For a file with fixed length records, BF is calculated
as: BF= ⌊BS/RS⌋

• For variable length records, BF denotes the
average number of records in a block

• Blocking factor determines how many records are
retrieved with a single read operation

22

File Organization

• Introductory Concepts

• Heap File Organization

• Sequential File Organization

• Random File Organization (Hashing)

• Indexed Sequential File Organization

• List Data Organization

• Secondary Indexes and Inverted Files

• B-trees and B+-trees
23

Introductory Concepts

• Search key: single attribute type, or set of
attribute types, whose values determine criteria
according to which records are retrieved

– can be primary key, alternative key, or one or more
non-key attribute types

– can be composite, e.g. (country, gender)

– can also be used to specify range queries, e.g.
YearOfBirth between 1980 and 1990

24

Introductory Concepts

• Primary file organization methods: determine physical
positioning of stored records on storage medium

– E.g., heap files, random file organization, indexed sequential file
organization

– can only be applied once

• Linear search: each record in file is retrieved and assessed
against search key

• Hashing and indexing: primary techniques that specify
relationship between record’s search key and physical
location

25

Introductory Concepts

• Secondary file organization methods: provide
constructs to efficiently retrieve records according
to search key that was not used for primary file
organization

– based on secondary index

26

Heap File Organization

• Basic primary file organization method

• New records inserted at end of file

• No relationship between record’s attributes and physical
location

• Only option for record retrieval is linear search

• For a file with NBLK blocks, it takes on average NBLK/2
sba to find record according to unique search key

• Searching records according to non-unique search key
requires scanning entire file

27

Sequential File Organization

• Records stored in ascending/descending order of
search key

• Efficient to retrieve records in order determined
by search key

• Records can still be retrieved by means of linear
search, but now a more effective stopping
criterion can be used, i.e. once first higher/lower
key value than required one is found

28

Sequential File Organization

• Binary search technique can be used

• For unique search key K, with values Ki, algorithm to retrieve record
with key value K
– Selection criterion: record with search key value K
– Set l = 1; h = number of blocks in file (suppose records are in

ascending order of search key K)

– Repeat until h  l

• i = (l + h) / 2, rounded to nearest integer

• Retrieve block i and examine key values Kj of records in block i

– if any Kj = K  record is found!

– else if K > all Kj  continue with l = i+1

– else if K < all Kj  continue with h = i-1

– else record is not in file

29

Sequential File Organization

• Expected number of block accesses to retrieve
record according to primary key by means of

– linear search: NBLK/2 sba

– binary search: log2(NBLK) rba

30

Sequential File Organization

• BF=⌊BS/RS⌋ =⌊2048/100⌋=20

• NBLK=30000/20=1500

• If single record is retrieved according to primary key using linear
search, expected number of required block accesses is
1500/2 = 750 sba

• If binary search is used, expected number of block accesses is
log2(1500) ≈ 11 rba

31

Number of records (NR) 30000

Block size (BS) 2048 bytes

Records size (RS) 100 bytes

Sequential File Organization

• Updating sequential file is more cumbersome than
updating heap file

– often done in batch

• Sequential files often combined with one or more
indexes (see later, indexed sequential file
organization)

32

Random File Organization (Hashing)

• Random file organization (a.k.a. direct file
organization, hash file organization) assumes direct
relationship between value of search key and physical
location

• Hashing algorithm defines key-to-address
transformation

– generated addresses pertain to bucket (contiguous area of
record addresses)

• Most effective when using primary key or other
candidate key as search key

33

Random File Organization (Hashing)

34

Random File Organization (Hashing)

• Hashing cannot guarantee that all keys are mapped to
different hash values, hence bucket addresses

• Collision occurs when several records are assigned to
same bucket (also called synonyms)

• If more synonyms than slots for a bucket, bucket is in
overflow

– additional block accesses needed to retrieve overflow records

• Hashing algorithm should distribute keys as evenly as
possible over the respective bucket addresses

35

Random File Organization (Hashing)

• Popular hashing technique is division:
address(keyi) = keyi mod M

– M is often a prime number (close to, but a bit larger
than, the number of available addresses)

36

Random File Organization (Hashing)

37

Series 1 Series 2

Key value Division by

20

Division by

23

Key

value

Division by

20

Division by

23

3000

3001

3002

3003

3004

3005

3006

3007

3008

3009

3010

3011

3012

00

01

02

03

04

05

06

07

08

09

10

11

12

10

11

12

13

14

15

16

17

18

19

20

21

22

3000

3025

3050

3075

3100

3125

3150

3175

3200

3225

3250

3275

3300

00

05

10

15

00

05

10

15

00

05

10

15

00

10

12

14

16

18

20

22

01

03

05

07

09

11

Series 1 Series 2

Key value Division by 20 Division by

23

Key value Division by

20

Division by

23

3013

3014

3015

3016

3017

3018

3019

13

14

15

16

17

18

19

00

01

02

03

04

05

06

3325

3350

3375

3400

3425

3450

3475

05

10

15

00

05

10

15

13

15

17

19

21

00

02

Random File Organization (Hashing)

• Efficiency of hashing algorithm measured by
expected number of rba and sba

• Retrieving non-overflow record:

– 1 rba to first block of bucket denoted by hashing
algorithm, possibly followed by 1 or more sba

• Additional block accesses needed for overflow
record depending on percentage of overflow
records and overflow handling technique

38

Random File Organization (Hashing)

• Percentage of overflow records depends on hashing
algorithm and key set

• Aim to achieve uniform distribution, spreading the set of
records evenly over the set of available buckets

• Required number of buckets NB: NB = ⌈NR / (BS×LF)⌉ with
NR number of records, BS bucket size and LF loading
factor

• Trade-off: larger bucket size implies smaller chance of
overflow, but more additional overhead to retrieve non-
overflow records

39

Random File Organization (Hashing)

• Loading factor (LF) represents average number of
records in bucket divided by bucket size

– indicates how ‘full’ every bucket is on average

– embodies trade-off between efficient use of storage
capacity and retrieval performance

– often set between 0.7 and 0.9

• Different overflow handling techniques

– overflow records stored either in primary area or in
separate overflow area

40

Random File Organization (Hashing)

• Open addressing
– overflow records stored in next free slot after full bucket where record would

normally have been stored

41

Random File Organization (Hashing)

• Chaining

– overflow records stored in separate overflow area,
with subsequent records that overflow from same
bucket being chained together by pointers (linked list)

– Pro: no cluttering of primary area, no additional
overflow

– Con: results in additional rba

• Note: dynamic hashing techniques allow for file to
shrink or grow without need for rearranging

42

Indexed Sequential File Organization

• Random file organization is efficient to retrieve
individual records by search key value

• Sequential File Organization is efficient if many
records are to be retrieved in certain order

• Indexed Sequential File organization method
reconciles both concerns

• Indexed Sequential File organization combines
sequential file organization with one or more
indexes

43

Indexed Sequential File Organization

• File is divided into intervals or partitions

• Each interval is represented by index entry containing search key
value of first record in interval and pointer to physical position of
first record in interval

• Pointer can be block pointer (referring to physical block address)
or record pointer (consisting of combination of block address and
record id or offset within block)

• Index is sequential file, ordered according to search key values
with entries: <search key value, block pointer or record pointer>

• Search key can be atomic (e.g., a CustomerID) or composite (e.g.
Year of Birth and Gender)

44

Indexed Sequential File Organization

• Dense index has index entry for every possible
value of search key

• Sparse index has index entry for only some of
search key values

• Dense indexes are generally faster, but require
more storage space and are more complex to
maintain than sparse indexes

• Note: index file occupies fewer disk blocks than
data file and can be searched much quicker

45

Indexed Sequential File Organization

• With primary index file organization, data file is ordered on unique
key and index is defined over this unique search key

46

Indexed Sequential File Organization

Note: NBLKI represents number of blocks in index!

47

Linear search NBLK sba

Binary search log2(NBLK) rba

Index based search log2(NBLKI) + 1 rba, with NBLKI << NBLK

Indexed Sequential File Organization

• Blocking factor of index = ⌊2048/15⌋=136

• NBLKI = ⌈1500/136⌉ = 12 blocks

• Binary search on index requires log2(12) + 1 ≈ 5 rba
(compare to 750 sba and 11 rba!)

48

Number of records (NR) 30000

Block size (BS) 2048 bytes

Records size (RS) 100 bytes

Index entry 15 bytes

Indexed Sequential File Organization

• Clustered index is similar to primary index,
but ordering criterion and search key, is non-
key attribute type or set of attribute types

• Can be dense or sparse

• Search process is same as with primary
index, except additional sba may be required
after first rba to data file, to retrieve all
subsequent records with same search key
value

49

Indexed Sequential File Organization

50

Indexed Sequential File Organization

• Similar to primary indexes, clustered indexes
assume keeping index up to date if records are
inserted or deleted or if search key value is
updated

• Options:

– start new block for every new value of search key

– provide separate overflow section for records that
cannot be stored in appropriate position in regular
sequential file

51

Indexed Sequential File Organization

• Creating index-to-an-index results in multilevel
indexes

52

Indexed Sequential File Organization

• Primary index and clustered index can never occur
together since there is only one way to physically
order a file

• Secondary indexes can be defined over other
search keys

– no impact on the physical ordering of records

53

List Data Organization

• A list can be defined as an ordered set of elements

• If each element has exactly one successor, except
for the last element, we call it a linear list

– all other types of lists are called nonlinear lists

54

List Data Organization

• Linear list embodies sequential data structure and
can be represented in 2 ways:

– sequential file organization method: logical ordering
represented by means of physical contiguity

– linked list: logical ordering represented using pointers

55

List Data Organization

• One-Way Linked List

– records physically stored in arbitrary order, or sorted according
to another search key

– logical sequential ordering represented by means of pointers

– often used to chain overflow records

56

List Data Organization

• One-Way Linked List (contd.)

– to avoid that all records must be retrieved (even if only
part of list needs to be processed), a directory can be
used

– a directory is a file that defines relationships between
records in another file

57

List Data Organization

• One-Way Linked List (contd.)

– indexed addressing: records distributed into intervals,
with each interval represented by an index entry

58

List Data Organization

• One-Way Linked List (contd.)

– expected retrieval time similar to sequential file organization
except all block accesses are rba

– limited impact of blocking

– cannot easily retrieve predecessor of record

– list cannot be reconstructed in case pointer gets lost or damaged

• Two-Way Linked List

– each record contains ‘prior’ pointer as well as ‘next’ pointer

– list can be processed efficiently in both directions

59

List Data Organization

60

List Data Organization

• A tree consists of nodes and edges with following properties:
– one root node

– every node, except for root, has exactly one parent node

– every node has 0, 1 or more children or child nodes

– nodes with same parent node are called siblings

– all children, children-of-children, etc. of a node are the node’s descendants

– a node without children is a leaf node

– tree structure consisting of non-root node and all its descendants is a
subtree

– nodes are distributed in levels, representing distance from root

– tree where all leaf nodes are at the same level is called balanced,
otherwise unbalanced

61

List Data Organization

• Tree data structures can be used to provide

–physical representation of logical hierarchy or
tree structure (e.g. hierarchy of employees)

–purely physical index structure to speed up
search and retrieval of records by navigating
interconnected nodes of tree (search tree)

• B-trees and B+-trees

62

List Data Organization

• Trees can be implemented by means of physical
contiguity

– nodes stored in ‘top-down-left-right’ sequence: first
root, then root’s first child, then child’s first child etc.

– if node has no more children, its next sibling (from left
to right) is stored

– if node has no more siblings, its parent’s next sibling is
stored

– each nodes’ level needs to be included explicitly

63

List Data Organization

• Letters represent record keys, numbers denote level in
tree for physical records

• Can only navigate in sequential way
64

List Data Organization

• Trees can be implemented by means of Linked
Lists

– physical contiguity complemented with pointers

– each node has pointer to its next sibling, if it exists

– both parent-child and sibling-sibling navigation
supported, respectively by accessing physically
subsequent record and following pointer

– single bit often added indicating whether node is a leaf
node (bit = 0) or not (bit = 1)

65

List Data Organization

• Many variations possible!
66

Secondary Indexes and Inverted files

• Characteristics of Secondary Indexes

• Inverted Files

• Multicolumn Indexes

• Other Index Types

67

Characteristics of Secondary Indexes

• Secondary index is based on attribute type or set
of attribute types that is/are not used as ordering
criteria of actual data file

• Secondary index’s search key can be

– atomic or composite

– primary key, other candidate key, or non-key attribute
type or combination of attribute types

• Index is again sequential file which can be
searched by means of binary search

68

Characteristics of Secondary Indexes

69
Unique search key!

Characteristics of Secondary Indexes

• If search key is non-unique

– dense index, with index entry for each record and
multiple entries with same key value

– add a level of indirection, with each index entry
referring to separate block that contains all pointers to
records with corresponding search key value (inverted
file)

70

Characteristics of Secondary Indexes
• Sample file with 30000 records and 1500 blocks

• Secondary index defined over unique search key

• Index contains 30000 index entries (one for each search
key value)

• Index entry size = 15 bytes, Blocking Factor of index = 136

• NBLKI = ⌈30000/136⌉ = 221 blocks

• Expected number of block accesses to retrieve record by
means of the secondary index Log2(221) + 1 ≈ 9 rba

• Without secondary index, it would take a full file scan,
hence on average 1500/2 = 750 sba

71

Inverted files

• Inverted file defines index over non-unique, non-ordering
search key of data set

• Index entries: <key value, block address>

• Block address refers to block containing record pointers or
block pointers to all records with that particular key value

• Requires additional rba to block with pointers to records

• Queries that involve multiple attribute types can be executed
efficiently by taking the intersection of blocks with pointers

72

Inverted files

73

Multicolumn Indexes
• Multicolumn index is index over composite search key

– can be implemented using inverted files

• Efficient to retrieve all records with the desired (Country, Gender) values or all
people living in a certain country, regardless of their gender!

• Not efficient to retrieve all males regardless of country! 74

Other Indexes

• Hash indexes provide secondary file
organization method that combines hashing
with indexed retrieval

– index entries: <key value, pointer>

– index is organized as hash file

– applying hash function to search key, yields
index block where corresponding index entry
can be found

75

Other Indexes

• Bitmap index

– for attribute types with only limited set of
values

– contain a row ID and a series of bits—one bit for
each possible value of indexed attribute type

–bit position that corresponds to the actual value
for the row at hand is set to ‘1’

– row ID’s can be mapped to record pointers

76

Other Indexes

77

RowID Belgium U.S.A. U.K. Germany France

0 1 0 0 0 0

1 0 1 0 0 0

2 0 0 1 0 0

3 0 0 0 1 0

4 0 0 0 0 1

5 1 0 0 0 0

6 0 0 1 0 0

7 0 1 0 0 0

8 0 0 0 0 1

9 1 0 0 0 0

10 0 0 1 0 0

11 0 1 0 0 0

RowID M F

0 1 0

1 0 1

2 1 0

3 1 0

4 0 1

5 1 0

6 0 1

7 0 1

8 1 0

9 1 0

10 1 0

11 0 1

Other Indexes

• Join index

– multicolumn index that combines attribute types from
2 or more tables in such a way that it contains the
precalculated result of a join between these tables

78

B-Trees and B+-Trees

• Multilevel Indexes Revisited

• Binary Search Trees

• B-trees

• B+-Trees

79

Multilevel Indexes Revisited
• Multilevel indexes useful for speeding up data access if lowest level index

becomes too large

• Index can be considered as a sequential file and building an index-to-the-
index improves access

• Higher-level index is, again, a sequential file to which index can be built
and so on

• Lowest level index entries may contain pointers to disk blocks or records

• Higher-level index contains as many entries as there are blocks in the
immediately lower level index

• Index entry consists of search key value and reference to corresponding
block in lower level index

• Index levels can be added until highest-level index fits within single disk
block

• First-level index, second-level index, third-level index etc.
80

Multilevel Indexes Revisited

• With binary search on single index, search interval, consisting
of disk blocks, is reduced by 2 with every iteration

• Approximately log2(NBLKI) rba to search index consisting of
NBLKI blocks

– one additional rba needed to actual data file

• With multilevel index, search interval is reduced by BFI with
every index level (BFI = blocking factor of index)

– BFI denotes how many index entries fit within single disk block

– also called fan-out of index

81

Multilevel Indexes Revisited
• Searching data file according to multilevel index requires

⌈logBFI(NBLKI)+2⌉ rba (NBLKI = number of blocks in first-level index):
– need to add index levels until highest-level index fits within single disk block

– number of required blocks for index level i: NBLKIi = ⌈NBLKIi-1/BFI ⌉ for i =
2,3,…

– by applying the previous formula (i-1) times, NBLKIi = ⌈NBLKI/(BFIi-1) ⌉ for i =
2,3,… with NBLKI number of blocks in lowest level index

– for highest-level index, consisting of only one block, it holds that
1 = ⌈NBLKI/(BFIh-1)⌉, with h denoting highest index level

– therefore h-1 = ⌈logBFI(NBLKI) ⌉ and hence h = ⌈logBFI(NBLKI)+1⌉

– number of block accesses to retrieve record by means of multilevel index
then corresponds to a rba for each index level, plus a rba to the data file,
which thus equals to ⌈logBFI(NBLKI)+2⌉

• BFI is typically >> 2, so using multilevel index is more efficient than
binary search on single level index

82

Multilevel Indexes Revisited

• 30000 records sample file

• Retain lowest level index from secondary index example

• Index entries are 15 bytes and BFI = 136

• Number of blocks in first-level index (NBLKI) = 221

• Second-level index then contains 221 entries and consumes
⌈221/136⌉ = 2 disk blocks

• If third index level is introduced, it contains 2 index entries and fits
within single disk block

• Searching record by means of multilevel index requires 4 rba; 3 to
respective index levels and 1 to actual data file
– can also be calculated as: ⌈log136(221)+2⌉ = 4

83

Multilevel Indexes Revisited

• Multilevel index can be considered as search tree,
with each index level representing level in tree,
each index block representing a node and each
access to the index resulting in navigation towards
a subtree in the tree

• Multilevel indexes may speed up data retrieval,
but large multilevel indexes require a lot of
maintenance in case of updates

84

Binary Search Trees

• Binary search tree is a physical tree structure,
where each node has at most 2 children

• Each tree node contains a search key value and
maximum 2 pointers to children

• Both children are root nodes of subtrees, with one
subtree only containing key values that are lower
than the key value in the original node, and the
other subtree only containing key values that are
higher

85

Binary Search Trees

• Search efficiency improved by ‘skipping’ half of the search
key values with every step (~ binary search)

• Suppose search key K is used with values Ki

– to find node with search key value K μ, key value Ki in root node
is compared to Kμ

– if Ki = Kμ, search key is found

– if Ki > K μ, pointer to root of the ‘left’ subtree is followed

– if Ki < K μ, pointer to root of the ‘right’ subtree is followed

• Apply recursively

86

Binary Search Trees

87

B-trees

• A B-tree is a tree-structured index

– variation of search tree

– each node corresponds to a disk block and nodes are kept
between half full and full to cater for a certain dynamism

• Every node contains a set of search key values, a set of
tree pointers that refer to child nodes and a set of data
pointers that refer to data records, or blocks with data
records, that correspond to search key values

• Data records stored separately and no part of B-tree

88

B-trees
• A B-tree of order k holds the following properties:

– non-leaf node has format: <P0, <K1, Pd1>, P1, <K2, Pd2>, … <Kq, Pdq>,
Pq>, with q  2k. Pi is tree pointer: points to another node in the tree.
This node is the root of the subtree that Pi refers to. Every Pdi is a
data pointer: it points to record with key value Ki, or to disk block that
contains it.

– B-tree is a balanced tree. Every path from root of to any leaf has same
length (height of B-tree). Leaf nodes have same structure as non-leaf
nodes, except that all their tree pointers Pi are null.

– within a node: K1 < K2 < … < Kq

– for every key value X in subtree referred to by Pi:

• Ki < X < Ki+1 for 0 < i < q

• X < Ki+1 for i = 0

• Ki < X for i = q 89

B-trees

• A B-tree of order k holds the following properties (contd.):
– B-tree’s root node has a number of key values, and equal number of data

pointers between 1 and 2k. Number of tree pointers and child nodes varies
between 2 and 2k+1.

– all internal nodes have number of key values and data pointers between k
and 2k. Number of tree pointers and child nodes varies between k+1 and
2k+1.

– every leaf has a number of key values and data pointers between k and 2k
and no tree pointers

• If indexed search key is non-unique, a level of indirection is
introduced (e.g., inverted file approach)
– data pointers Pdi then point to block containing pointers to all records

satisfying search key value Ki

90

B-trees

91

B-trees
• B-tree is searched recursively starting from the

root

– if desired key value X is found in a node (say Ki = X),
then corresponding data record(s) can be accessed by
following Pdi

– if desired value is not found in node, the subtree
pointer Pi to be followed is the one corresponding to
the smallest value of i for which X < Ki+1. If X > all Ki

then the tree pointer Pi+1 is followed

• Note: fan-out and search efficiency is much higher
than with binary search!

92

B-trees

• Capacity of node equals the size of a disk bock

• All nodes, except for the root, are filled for at least 50%

– impact on additions and removals

• Complex to make exact predictions about required
number of block accesses when searching B-tree

• B-trees can also be used as primary file organization
technique

– instead of data pointers, nodes contain actual data fields of
records that correspond to search key values

93

B+-trees

• In a B+-tree

– only leaf nodes contain data pointers

– all key values that exist in non-leaf nodes are repeated
in leaf nodes, such that every key value occurs in a leaf
node, along with corresponding data pointer

– higher-level nodes only contain subset of key values
present in leaf nodes

– every leaf node of a B+-tree also has one tree pointer,
pointing to its next sibling

94

B+-trees

95

B+-trees

• Searching and updating B+-tree is similar as B-tree

• B+-trees are often more efficient, because non-leaf
nodes do not contain data pointers

– height of B+-tree is often smaller, resulting in less block
accesses to search

• Variations on fill factor which is 50% for standard
B-trees and B+-trees

– E.g., a B-tree with fill factor of 2/3 is called a B*-tree

96

Conclusions

• Storage Hardware and Physical Database Design

• Record Organization

• File Organization

97

More information?

www.pdbmbook.com 98

http://www.pdbmbook.com/

