Physical File Organization and Indexin

l
{l
JUMP INTO 'IJHEE VING%IORL

2T L e

s S AN S

OFDATA SEMA GEM#

Princlgles of Database|h with the &

databdse design‘and modeling, database systems; data storage, and the'evolving world
of data warehousmg, governance and more. Designed for those studying datal?se

for or science, this i
textbook has a well-| ba|anced tbeory practice focus and covers the essential tapics,
from d d: ies up to recent trends like Big Data, NoSQL, and
analytics. On-going case studies, anI down boxes that reveal deeper insights on key,
topics, retention questions at the end of every section of a chapter, and connections
boxes that show the i b hroughout the text are included to
provide the practical tools to get started in database management.

KEY FEATURES INCLUDE:
= Full-color illustrations throughout the text.

* Extensive coverage of important trending topics, including data warehousing, business
intelligence, data integration, data quality, data governance, Big Data and analytics.
An online playground with diverse environments, including MySQL for querying;
MongoDB; Neod4j Cypher; and a tree structure visualization environment.

Hundreds of examples to illustrate and clarify the concepts discussed that can be
reproduced on the book’s companion online playground.
Case studies, review q i and

[

in every chapter.
Additional cases, problems and exercises in the appendix.

Online Resources
www.cambridge.org/

Instructor’s resources

M Solutions manual
M Code and data for examples

to an and apply the fundamental comtpts [-

CAMBRIDG

E

UNIVERSITY PRESS

www.cambridge.org

ISBN 97
Cover illustration: ©Chen Hanquan / DigitalVision / Getty Images.
Cover design: Andrew Ward

9"781107"'186125">

SNSave ONY
v NAHYIWAT

I1IN0YE NIANYA

+

hill

L
o
=
rm
w
(=
-

INIW3IVNVIN 3SVE

WILFRIED LEMAHIEU
SEPPE VANDEN BROUCKE
BART BAESENS

PRINCIPLES OF
DATABASE

MANAGEMENT

THE PRACTICAL GUIDETO STORING. MANAGING
AND ANALYZING BIG AND SMALL DATQ’

§
-

www.pdbmbook o |

http://www.pdbmbook.com/

Introduction

e Storage Hardware and Physical Database Design
* Record Organization
* File Organization

Storage Hardware and Physical Database Design

 The Storage Hierarchy
* |nternals of Hard Disk Drives
* From Logical Concepts to Physical Constructs

The Storage Hierarchy

CPU registers
Primary storage

(volatile) High speed cache

Central storage /O Boundary

HDD or SSD

Secondary storage
(persistent) Tape and/or optical media

 Computer memory hierarchy

— high speed memory, expensive and limited in capacity at the top

— slower memory, relatively cheap and larger in size at the bottom

The Storage Hierarchy

* Primary Storage (a.k.a. volatile memory)

— Central Processing Unit (CPU): executes mathematical
and logical processor operations

— cache memory operates at nearly same speed as CPU

— central storage (a.k.a. internal memory, main memory):
consists of memory chips (also called Random Access
Memory, or RAM) of which the performance is
expressed in hanoseconds

— contains database buffer and runtime code of the
applications and DBMS

The Storage Hierarchy

* Secondary Storage

— persistent storage media

— Hard disk drive (HDD) and solid state drives (SSD)
based on flash memory

— contains physical database files

The Storage Hierarchy

Primary and secondary storage divided by I/O
boundary

Exchange of data between secondary storage and
primary storage is called I/0 (input/output) and is
supervised by the operating system

Still lower in the hierarchy: optical drives (e.g.,
rewritable DVD, Blu-ray) and tape

In what follows: hard disk drive as the storage
medium!

Internals of Hard Disk Drives

Hard Disk Drive (HDD) stores data on circular platters,
which are covered with magnetic particles

A HDD also contains a hard disk controller
HDDs are directly accessible storage devices (DASDs)

Platters are secured on a spindle, which rotates at a
constant speed

Read/write heads can be positioned on arms, which are
fixed to an actuator

Internals of Hard Disk Drives

Platter Spindle

Track Actuator

Read/Write head

Sector

<

—_—
——

Actuator movement

Internals of Hard Disk Drives

By combining disk rotation with actuator movement, each
individual section of the disk is directly reachable

Magnetic particles on platters are organized in concentric
circular tracks, with each track consisting of sectors

Sector is the smallest addressable unit on hard disk drive
— traditionally: 512 bytes; recently: 4096 bytes

A set of tracks, with the same diameter, is called a cylinder

Disk blocks (aka clusters, pages, allocation units) consist of 2
or more physically adjacent sectors

Internals of Hard Disk Drives

 Reading from a block, or writing to a block implies
— positioning the actuator (seek time)

— wait until the desired sector has rotated under the read/write
head (rotational delay, latency)

* Transfer time depends on block size, density of magnetic
particles and rotation speed of disks

* Response time = service time + queueing time

* Service time = seek time + rotational delay + transfer time

Internals of Hard Disk Drives

Physical file organization can be optimized to
minimize expected seek time and rotational delay

T, refers to expected time to retrieve/write disk
block independently of previous read/write:
T,.=Seek + ROT/2 + BS/TR

T,,, refers to expected time to sequentially retrieve
disk block with R/W head already in correct
position: T, . = ROT/2 + BS/TR

Note: block size (BS), rotation time (ROT) and
transfer rate (TR)

Internals of Hard Disk Drives

Average seek time [8.9 ms

Spindle speed 7200 rpm
Transfer rate 150 MBps
Block size 4096 bytes

* T,,=89ms+4.167 ms+0.026 ms = 13.093 ms
* T,,=4.167 ms +0.026 ms =4.193 ms

From Logical Concepts to Physical Constructs

* Physical database design: translate logical data model into
internal data model (a.k.a. physical data model)

» Trade-off between efficient update/retrieval and efficient
use of storage space

* Focus on physical organization of structured, relational
datal

Internal Conceptual/ logical External

data model data model data model

physical data independence Logical data independence

From Logical Concepts to Physical Constructs

Logical data model Logical data model Internal data model
(general terminology) (relational setting)
Attribute type and attribute | Column name and (cell) value Data item or field
(Entity) record Row or tuple Stored record
(Entity) record type Table or relation Physical file or data set
Set of (entity) record types Set of tables or relations Physical database or stored database
Logical data structures Foreign keys Physical storage structures

From Logical Concepts to Physical Constructs

Conceptual data model
Supplier <> PurchaseOrder
(1..1) (0..n)
SuppName @

SuppAddres

Logical data model

Supplier (SupplD, SuppName, SuppAddress)
PurchaseOrder (PONo, PODate, SupplD)

Supplierl @_| Internal data model

Supplier3
Supplier5 i\

Supplierl POrdo5 | POrdos | POrdi3 %
suppliers POrdo2 | POrdos | POrd20 %
Supplier3 POrdo1 POrdi4 %

Record Organization

* Record organization refers to organization of data
items into stored records

* Physical implementation of data item is a series of
bits

e Common techniques
— relative location

— embedded identification
— pointers and lists

Record Organization

e Relative Location
—simplest and most widespread

—data items that represent attributes of same
entity are stored on physically adjacent
addresses

—attribute types determined by relative ordering

Record Organization

155-9211351-47

Smith R.

Charlotte Street 117, London WC1

l

Data item that
represents the
attribute
Social Security
number (S5N)

N\ l

Data item that Data item that
represents the represents the

attribute attribute

Employee name Employee address

CREATE TABLE EMPLOYEE

(SSN ...

EMPLOYEE NAME ...
EMPLOYEE ADDRESS ...

);

19

Record Organization

* Embedded Identification

—data items representing attributes always
preceded by attribute type

—only non-empty attributes of record included

—missing attributes not a problem and no need to
store attributes in fixed order to identify them

—similar to XML and JSON

SSN

155-9211351-47

Name

Smith R.

Address

Charlotte Street 117, London WC1

Record Organization

e Pointers and Lists

— ideal for dealing with variable length records (due to
e.g. variable length data type, multivalued attribute
type, optional attribute type, etc.)

155-9211351-47

Smith R.

Address 1

i — —

160-3514692-18

Gallup S.

Address 1

~——

—
e — —
e ———
-

—
— —
— —

— —

—
— —
— —

— —
—

Address 2

Address 2 | Address 3

Record Organization

Blocking factor (BF) indicates how many records
are stored in single disk block

For a file with fixed length records, BF is calculated
as: BF=|BS/RS]

For variable length records, BF denotes the
average number of records in a block

Blocking factor determines how many records are
retrieved with a single read operation

File Organization

* Introductory Concepts

* Heap File Organization

* Sequential File Organization
 Random File Organization (Hashing)
* |Indexed Sequential File Organization

* List Data Organization
* Secondary Indexes and Inverted Files
* B-trees and B*-trees

Introductory Concepts

* Search key: single attribute type, or set of
attribute types, whose values determine criteria
according to which records are retrieved

— can be primary key, alternative key, or one or more
non-key attribute types

— can be composite, e.g. (country, gender)

— can also be used to specify range queries, e.g.
YearOfBirth between 1980 and 1990

Introductory Concepts

* Primary file organization methods: determine physical
positioning of stored records on storage medium

— E.g., heap files, random file organization, indexed sequential file
organization

— can only be applied once

 Linear search: each record in file is retrieved and assessed
against search key

* Hashing and indexing: primary techniques that specify
relationship between record’s search key and physical
location

Introductory Concepts

e Secondary file organization methods: provide
constructs to efficiently retrieve records according
to search key that was not used for primary file
organization

— based on secondary index

Heap File Organization

Basic primary file organization method
New records inserted at end of file

No relationship between record’s attributes and physical
location

Only option for record retrieval is linear search

For a file with NBLK blocks, it takes on average NBLK/2
sba to find record according to unique search key

Searching records according to non-unique search key
requires scanning entire file

Sequential File Organization

* Records stored in ascending/descending order of
search key

e Efficient to retrieve records in order determined
by search key

* Records can still be retrieved by means of linear
search, but now a more effective stopping
criterion can be used, i.e. once first higher/lower
key value than required one is found

Sequential File Organization

Binary search technique can be used

For unique search key K, with values K, algorithm to retrieve record
with key value K,

Selection criterion: record with search key value K,

Set 1 = 1; h = number of blocks in file (suppose records are in
ascending order of search key K)

Repeat until h > 1
« i=(1+h) / 2, rounded to nearest integer
* Retrieve block i and examine key values K; of records in block 1

if any K = Kp = record is found!

else if K, > all K; > continue with 1 = i+l

else if Ku < all Kj —> continue with h i-1

else record is not in file

Sequential File Organization

* Expected number of block accesses to retrieve
record according to primary key by means of

— linear search: NBLK/2 sba
— binary search: log,(NBLK) rba

Sequential File Organization

Number of records (NR) | 30000

Block size (BS) 2048 bytes

Records size (RS) 100 bytes

BF=|BS/RS| =|2048/100|=20
NBLK=30000/20=1500

If single record is retrieved according to primary key using linear
search, expected number of required block accesses is
1500/2 = 750 sba

If binary search is used, expected number of block accesses is
log,(1500) = 11 rba

Sequential File Organization

* Updating sequential file is more cumbersome than
updating heap file
— often done in batch

e Sequential files often combined with one or more
indexes (see later, indexed sequential file
organization)

Random File Organization (Hashing)

 Random file organization (a.k.a. direct file
organization, hash file organization) assumes direct
relationship between value of search key and physical

location

* Hashing algorithm defines key-to-address
transformation
— generated addresses pertain to bucket (contiguous area of
record addresses)
* Most effective when using primary key or other
candidate key as search key

Random File Organization (Hashing)

Key value of the record

Numerical form of key value

l Hashing algorithm

Bucket address = hash value

precise range of available addresses

l Fitting of block address in function of

Relative block address

l Storage device properties

Absolute block address

Random File Organization (Hashing)

Hashing cannot guarantee that all keys are mapped to
different hash values, hence bucket addresses

Collision occurs when several records are assighed to
same bucket (also called synonyms)

If more synonyms than slots for a bucket, bucket is in
overflow
— additional block accesses needed to retrieve overflow records

Hashing algorithm should distribute keys as evenly as
possible over the respective bucket addresses

Random File Organization (Hashing)

* Popular hashing technique is division:
address(key.) = key. mod M

— M is often a prime number (close to, but a bit larger
than, the number of available addresses)

Random File Organization (Hashing)

Series 1 Series 2
Key value|Division by|Division by| Key [Division by|Division by

20 23 value 20 23
3000 00 10 3000 00 10
3001 01 11 3025 05 12
3002 02 12 3050 10 14
3003 03 13 3075 15 16
3004 04 14 3100 00 18
3005 05 15 3125 05 20
3006 06 16 3150 10 22
3007 07 17 3175 15 01
3008 08 18 3200 00 03
3009 09 19 3225 05 05
3010 10 20 3250 10 07
3011 11 21 3275 15 09
3012 12 22 3300 00 11

Series 1 Series 2
Key value [Division by 20 Division by | Key value | Division by | Division by

23 20 23
3013 13 00 3325 05 13
3014 14 01 3350 10 15
3015 15 02 3375 15 17
3016 16 03 3400 00 19
3017 17 04 3425 05 21
3018 18 05 3450 10 00
3019 19 06 3475 15 02

Random File Organization (Hashing)

* Efficiency of hashing algorithm measured by
expected number of rba and sba

e Retrieving non-overflow record:

— 1 rba to first block of bucket denoted by hashing
algorithm, possibly followed by 1 or more sba

* Additional block accesses needed for overflow
record depending on percentage of overflow
records and overflow handling technique

Random File Organization (Hashing)

Percentage of overflow records depends on hashing
algorithm and key set

Aim to achieve uniform distribution, spreading the set of
records evenly over the set of available buckets

Required number of buckets NB: NB = [NR / (BSxLF)| with
NR number of records, BS bucket size and LF loading
factor

Trade-off: larger bucket size implies smaller chance of
overflow, but more additional overhead to retrieve non-
overflow records

Random File Organization (Hashing)

* Loading factor (LF) represents average number of
records in bucket divided by bucket size

— indicates how ‘full’ every bucket is on average

— embodies trade-off between efficient use of storage
capacity and retrieval performance

— often set between 0.7 and 0.9
* Different overflow handling techniques

— overflow records stored either in primary area or in
separate overflow area

Random File Organization (Hashing)

* Open addressing

— overflow records stored in next free slot after full bucket where record would
normally have been stored

Hash = key mod 10
LF=0,45

Bucket size =4

BF =2

Open addressing

© 00 ~N O u» A W N

Record slot
> Block

.

>

Bucket

Required block accesses for retrieving non-
overflow records: 1 rba or (1 rba + 1 sbha)

Required block accesses for retrieving
(overflow) record with ID 35: (1 rba + 3 sba)

Random File Organization (Hashing)

* Chaining

— overflow records stored in separate overflow area,
with subsequent records that overflow from same
bucket being chained together by pointers (linked list)

— Pro: no cluttering of primary area, no additional
overflow

— Con: results in additional rba

* Note: dynamic hashing techniques allow for file to
shrink or grow without need for rearranging

Indexed Sequential File Organization

Random file organization is efficient to retrieve
individual records by search key value

Sequential File Organization is efficient if many
records are to be retrieved in certain order

Indexed Sequential File organization method
reconciles both concerns

Indexed Sequential File organization combines
sequential file organization with one or more
indexes

Indexed Sequential File Organization

File is divided into intervals or partitions

Each interval is represented by index entry containing search key
value of first record in interval and pointer to physical position of
first record in interval

Pointer can be block pointer (referring to physical block address)
or record pointer (consisting of combination of block address and
record id or offset within block)

Index is sequential file, ordered according to search key values
with entries: <search key value, block pointer or record pointer>

Search key can be atomic (e.g., a CustomerID) or composite (e.g.
Year of Birth and Gender)

Indexed Sequential File Organization

Dense index has index entry for every possible
value of search key

Sparse index has index entry for only some of
search key values

Dense indexes are generally faster, but require
more storage space and are more complex to
maintain than sparse indexes

Note: index file occupies fewer disk blocks than
data file and can be searched much quicker

Indexed Sequential File Organization

* With primary index file organization, data file is ordered on unique
key and index is defined over this unique search key

File with stored records

CustomerlD FirstName LastName Country Year of birth Gender

I ndex 10023 Bart Baesens Belgium 1975 M

Keyvalue | Pointer 10098 Charlotte Bobson USA. 1968 F

10023 @ 10233 Donald McDonald U.K. 1960 M

10351 @ 10299 Heiner Pilzner Germany 1973 M
11349 @

10351 Simonne Toutdroit France 1981 F

10359 Seppe Vanden Broucke Belgium 1989 M

10544 Bridget Charlton U.K. 1992 F

11213 Angela Kissinger U.S.A. 1969 F

11349 Henry Dumortier France 1987 M

11821 Wilfried Lemahieu Belgium 1970 M

12111 Tim Pope U.K. 1956 M

12194 Naomi Leary U.S.A. 1999 F

Indexed Sequential File Organization

Linear search NBLK sba

Binary search log,(NBLK) rba

Index based search | log,(NBLKI) + 1 rba, with NBLKI << NBLK

Note: NBLKI represents number of blocks in index!

Indexed Sequential File Organization

Number of records (NR) | 30000

Block size (BS) 2048 bytes
Records size (RS) 100 bytes
Index entry 15 bytes

* Blocking factor of index = [2048/15|=136
* NBLKI=[1500/136] = 12 blocks

* Binary search on index requires log,(12) + 1 = 5 rba
(compare to 750 sba and 11 rba!)

Indexed Sequential File Organization

* Clustered index is similar to primary index,
but ordering criterion and search key, is non-
key attribute type or set of attribute types

* Can be dense or sparse

* Search process is same as with primary
index, except additional sba may be required
after first rba to data file, to retrieve all
subsequent records with same search key
value

Indexed Sequential File Organization

Index

File with stored records

Key value

Pointer

Belgium

France

Germany

U.K.

US.A.

o o 0| 0Q

CustomerID FirstName LastName Country Year of birth Gender
10023 Bart Baesens Belgium 1975 M
10359 Seppe Vanden Broucke Belgium 1989 M
11821 Wilfried Lemahieu Belgium 1970 M
10351 Simonne Toutdroit France 1981 F
11349 Henry Dumortier France 1987 M
10299 Heiner Pilzner Germany 1973 M
10544 Bridget Charlton U.K. 1992 F
10233 Donald McDonald U.K. 1960 M
12111 Tim Pope U.K. 1956 M
11213 Angela Kissinger U.S.A 1969 F
10098 Charlotte Bobson US.A, 1968 F
12194 Naomi Leary U.S.A. 1999 F

50

Indexed Sequential File Organization

* Similar to primary indexes, clustered indexes
assume keeping index up to date if records are
inserted or deleted or if search key value is
updated

* Options:
— start new block for every new value of search key

— provide separate overflow section for records that

cannot be stored in appropriate position in regular
sequential file

Indexed Sequential File Organization

* Creating index-to-an-index results in multilevel
indexes

File with stored records

| n d ex I ev el 1 CustomeriD FirstName LastName Country Year of birth Gender

Key value | Pointer 10023 Bart Baesens Belgium 1975 M

I n d ex Ievel 2 10023 @ 10098 Charlotte Bobson U.S.A. 1968 F

orEre | B 10351 @ 10233 Donald McDonald UK. 1960 M

10023 ® 11349 @ 10299 Heiner Pilzner Germany 1973 M
13153 @ - .

10351 Simonne Toutdroit France 1981 F

1822t ! 13153 Q 10359 Seppe Vanden Broucke Belgium 1989 M

1EE8] 10544 Bridget Charlton UK. 1992 F

14009 @ 11213 Angela Kissinger US.A. 1969 F

11349 Henry Dumortier France 1987 M

SE228 Q 11821 Wilfried Lemahieu Belgium 1970 M

18361 Q. 12111 Tim Pope U.K. 1956 M

HHEE Qe 12194 Naomi Leary US.A. 1999 F

Indexed Sequential File Organization

* Primary index and clustered index can never occur
together since there is only one way to physically
order a file

* Secondary indexes can be defined over other
search keys
— no impact on the physical ordering of records

List Data Organization

e Alist can be defined as an ordered set of elements

* |f each element has exactly one successor, except
for the last element, we call it a linear list

— all other types of lists are called nonlinear lists

List Data Organization

* Linear list embodies sequential data structure and
can be represented in 2 ways:

— sequential file organization method: logical ordering
represented by means of physical contiguity

— linked list: logical ordering represented using pointers

List Data Organization

 One-Way Linked List

— records physically stored in arbitrary order, or sorted according
to another search key

— logical sequential ordering represented by means of pointers
— often used to chain overflow records

10 11 12 13

B 15 E 12|\—p | F 13|— |G 17
) L -
14 (15 16) 17 / 18

1

»{ A 10

C 16 [« | D 11 H 18|— | !

List Data Organization

* One-Way Linked List (contd.)

— to avoid that all records must be retrieved (even if only
part of list needs to be processed), a directory can be
used

— a directory is a file that defines relationships between
records in another file

10 11 12 13

B E F G

14 15 16 17 18

14 |10 |15 |16 |11 |12 |13 | 17 | 18 * Directory

List Data Organization

 One-Way Linked List (contd.)

— indexed addressing: records distributed into intervals,
with each interval represented by an index entry

Key Address

14
16
13

-_nA

10 11 12 13

B 15 E 12|\—p | F 13—, |G 17
i L
14 (15 16 7 17 / 18
- Vs

- A 10

C 16|~y | D 11 H 18— |1

List Data Organization

* One-Way Linked List (contd.)

— expected retrieval time similar to sequential file organization
except all block accesses are rba

— limited impact of blocking
— cannot easily retrieve predecessor of record
— list cannot be reconstructed in case pointer gets lost or damaged

 Two-Way Linked List
— each record contains ‘prior’ pointer as well as ‘next’ pointer
— list can be processed efficiently in both directions

List Data Organization

10 11 12 13
—> o
14 | B 15 16 | E 12 11 | F 13| 2112 |G 17
/ 'Y
14 15 16 \ 17 18
o~ \
18 | A 10 10 | C 16 | 15 | D 11 13 | H 18 17 || 14

Je—

List Data Organization

* A tree consists of nodes and edges with following properties:

one root node

every node, except for root, has exactly one parent node

every node has 0, 1 or more children or child nodes

nodes with same parent node are called siblings

all children, children-of-children, etc. of a node are the node’s descendants
a node without children is a leaf node

tree structure consisting of non-root node and all its descendants is a
subtree

nodes are distributed in levels, representing distance from root

tree where all leaf nodes are at the same level is called balanced,
otherwise unbalanced

List Data Organization

* Tree data structures can be used to provide

— physical representation of logical hierarchy or
tree structure (e.g. hierarchy of employees)

—purely physical index structure to speed up
search and retrieval of records by navigating
interconnected nodes of tree (search tree)

e B-trees and B*-trees

List Data Organization

* Trees can be implemented by means of physical
contiguity
— nodes stored in ‘top-down-left-right” sequence: first
root, then root’s first child, then child’s first child etc.

— if node has no more children, its next sibling (from left
to right) is stored

— if node has no more siblings, its parent’s next sibling is
stored

— each nodes’ level needs to be included explicitly

List Data Organization

* Letters represent record keys, numbers denote level in
tree for physical records

* Can only navigate in sequential way

List Data Organization

* Trees can be implemented by means of Linked
Lists
— physical contiguity complemented with pointers
— each node has pointer to its next sibling, if it exists

— both parent-child and sibling-sibling navigation
supported, respectively by accessing physically
subsequent record and following pointer

— single bit often added indicating whether node is a leaf
node (bit = 0) or not (bit = 1)

List Data Organization

L 16 0 (| M 0 I 0

* Many variations possible!

Secondary Indexes and Inverted files

Characteristics of Secondary Indexes
Inverted Files

Multicolumn Indexes

Other Index Types

Characteristics of Secondary Indexes

* Secondary index is based on attribute type or set
of attribute types that is/are not used as ordering
criteria of actual data file

* Secondary index’s search key can be

— atomic or composite

— primary key, other candidate key, or non-key attribute
type or combination of attribute types

* |Index is again sequential file which can be
searched by means of binary search

Characteristics of Secondary Indexes

Index

Key value

Pointer

10023

®

10098

10233

10299

10351

10359

10544

11213

1134°

11821

12111

12194

AR AN AN A AR AN AN g0)

File with stored records

CustomerlD FirstName LastName Country Year of birth Gender
10023 Bart Baesens Belgium 1975 M
10359 Seppe Vanden Broucke Belgium 1989 M
11821 Wilfried Lemahieu Belgium 1970 M
10351 Simonne Toutdroit France 1981 F
11349 Henry Dumortier France 1987 M
10299 Heiner Pilzner Germany 1973 M
10544 Bridget Charlton U.K. 1992 F
10233 Donald McDonald U.K. 1960 M
12111 Tim Pope U.K 1956 M
11213 Angela Kissinger U.S.A. 1969 F
10098 Charlotte Bobson U.S.A. 1968 F
12194 Naomi Leary U.S.A. 1999 F

Unique search key!

69

Characteristics of Secondary Indexes

* |f search key is non-unique

— dense index, with index entry for each record and
multiple entries with same key value

— add a level of indirection, with each index entry
referring to separate block that contains all pointers to

records with corresponding search key value (inverted
file)

Characteristics of Secondary Indexes

Sample file with 30000 records and 1500 blocks
Secondary index defined over unique search key

Index contains 30000 index entries (one for each search
key value)

Index entry size = 15 bytes, Blocking Factor of index = 136

NBLKI = [30000/136] = 221 blocks

Expected number of block accesses to retrieve record by
means of the secondary index Log,(221) + 1 = 9 rba

Without secondary index, it would take a full file scan,
hence on average 1500/2 = 750 sba

Inverted files

Inverted file defines index over non-unique, non-ordering
search key of data set

Index entries: <key value, block address>

Block address refers to block containing record pointers or
block pointers to all records with that particular key value

Requires additional rba to block with pointers to records

Queries that involve multiple attribute types can be executed
efficiently by taking the intersection of blocks with pointers

Inverted files

Index

Key value

Pointer

Belgium

France

Germany

U.K.

US.A.

alaidbdh

//]]]

Blocks with
pointers

e /X

AN

Y

t/f/\

W/

File with stored records

CustomerlD FirstName LastName Country Year of birth Gender
10023 Bart Baesens Belgium 1975 M
10098 Charlotte Bobson U.S.A. 1968 F
10233 Donald McDonald U.K. 1960 M
10299 Heiner Pilzner Germany 1973 M
10351 Simonne Toutdroit France 1981 B
10359 Seppe Vanden Broucke Belgium 1989 M
10544 Bridget Charlton U.K. 1992 F
11213 Angela Kissinger U.S.A. 1969 F
11349 Henry Dumortier France 1987 M
11821 Wilfried Lemahieu Belgium 1970 M
12111 Tim Pope U.K. 1956 M
12194 Naomi Leary U.S.A. 1999 F

73

Multicolumn Indexes

Multicolumn index is index over composite search key

— can be implemented using inverted files

Index
Key value | Pointer
Belgium, M O
Belgium, F

France, M)
France, F O
Germany, M O
Germany, F
UK, M O
UK., F Y
USA, M
USA, F @

» Efficient to retrieve all records with the desired (Country, Gender) values or all

Blocks with
pointers
o 0@
O
| AKX
@
@ @
@ @ @
@
@

File with stored records

CustomerID | FirstName LastName Country Year of birth | Gender
10023 Bart Baesens Belgium 1975 M
10098 Charlotte Bobson US.A. 1968 F
10233 Donald McDonald U.K. 1960 M
10299 Heiner Pilzner Germany 1973 M
10351 Simonne Toutdroit France 1981 F
10359 Seppe Vanden Broucke Belgium 1989 M
10544 Bridget Charlton U.K. 1992 F
11213 Angela Kissinger U.S.A. 1969 F
11349 Henry Dumortier France 1987 M
11821 Wilfried Lemahieu Belgium 1970 M
12111 Tim Pope U.K. 1956 M
12194 Naomi Leary US.A. 1999 F

people living in a certain country, regardless of their gender!

Not efficient to retrieve all males regardless of country!

74

Other Indexes

* Hash indexes provide secondary file
organization method that combines hashing

with
—Iine
—Iine
—ap

indexed retrieval

ex entries: <key value, pointer>

ex is organized as hash file

olying hash function to search key, yields

INC

ex block where corresponding index entry

can be found

Other Indexes

* Bitmap index

—for attribute types with only limited set of
values

—contain a row ID and a series of bits—one bit for
each possible value of indexed attribute type

— bit position that corresponds to the actual value
for the row at hand is set to ‘1’

—row ID’s can be mapped to record pointers

Other Indexes

F

M

RowlID

10
11

RowlD | Belgium | U.S.A. | U.K. | Germany | France

10
11

Other Indexes

 Join index

— multicolumn index that combines attribute types from
2 or more tables in such a way that it contains the
precalculated result of a join between these tables

B-Trees and B*-Trees

Multilevel Indexes Revisited
Binary Search Trees

B-trees

B*-Trees

Multilevel Indexes Revisited

Multilevel indexes useful for speeding up data access if lowest level index
becomes too large

Index can be considered as a sequential file and building an index-to-the-
index improves access

Higher-level index is, again, a sequential file to which index can be built
and so on

Lowest level index entries may contain pointers to disk blocks or records

Higher-level index contains as many entries as there are blocks in the
immediately lower level index

Index entry consists of search key value and reference to corresponding
block in lower level index

Index levels can be added until highest-level index fits within single disk
block

First-level index, second-level index, third-level index etc.

Multilevel Indexes Revisited

* With binary search on single index, search interval, consisting
of disk blocks, is reduced by 2 with every iteration

* Approximately log,(NBLKI) rba to search index consisting of
NBLKI blocks
— one additional rba needed to actual data file

* With multilevel index, search interval is reduced by BFI with
every index level (BFI = blocking factor of index)

— BFI denotes how many index entries fit within single disk block
— also called fan-out of index

Multilevel Indexes Revisited

* Searching data file according to multilevel index requires
[loggr(NBLKI)+2] rba (NBLKI = number of blocks in first-level index):

— need to add index levels until highest-level index fits within single disk block

— number of required blocks for index level i: NBLKI. = [NBLKI. ,/BFI | for i =
2,3,...

— by applying the previous formula (i-1) times, NBLKI. = [NBLKI/(BFI"1)] fori =
2,3,... with NBLKI number of blocks in lowest level index

— for highest-level index, consisting of only one block, it holds that
1 = [NBLKI/(BFIM1)], with h denoting highest index level

— therefore h-1 = [log(NBLKI) | and hence h = [logg,(NBLKI)+1]

— number of block accesses to retrieve record by means of multilevel index
then corresponds to a rba for each index level, plus a rba to the data file,
which thus equals to [logg,(NBLKI)+2]

* BFlis typically >> 2, so using multilevel index is more efficient than
binary search on single level index

Multilevel Indexes Revisited

30000 records sample file

Retain lowest level index from secondary index example
Index entries are 15 bytes and BFI = 136

Number of blocks in first-level index (NBLKI) = 221

Second-level index then contains 221 entries and consumes
[221/136] = 2 disk blocks

If third index level is introduced, it contains 2 index entries and fits
within single disk block

Searching record by means of multilevel index requires 4 rba; 3 to
respective index levels and 1 to actual data file
— can also be calculated as: [log,5,(221)+2] =4

Multilevel Indexes Revisited

 Multilevel index can be considered as search tree,
with each index level representing level in tree,
each index block representing a node and each
access to the index resulting in navigation towards
a subtree in the tree

* Multilevel indexes may speed up data retrieval,
but large multilevel indexes require a lot of
maintenance in case of updates

Binary Search Trees

* Binary search tree is a physical tree structure,
where each node has at most 2 children

* Each tree node contains a search key value and
maximum 2 pointers to children

 Both children are root nodes of subtrees, with one
subtree only containing key values that are lower
than the key value in the original node, and the
other subtree only containing key values that are
higher

Binary Search Trees

* Search efficiency improved by ‘skipping’ half of the search
key values with every step (~ binary search)

* Suppose search key K is used with values K.

— to find node with search key value K , key value K; in root node
is compared to K

— if K; = K, search key is found
— if K; > K, pointer to root of the ‘left” subtree is followed
— if K; <K, pointer to root of the ‘right’ subtree is followed

* Apply recursively

Binary Search Trees

(29
(8 (28
®» W @ G
O W @ G

B-trees

e A B-tree is a tree-structured index
— variation of search tree

— each node corresponds to a disk block and nodes are kept
between half full and full to cater for a certain dynamism
* Every node contains a set of search key values, a set of
tree pointers that refer to child nodes and a set of data
pointers that refer to data records, or blocks with data
records, that correspond to search key values

e Data records stored separately and no part of B-tree

B-trees

* A B-tree of order k holds the following properties:

non-leaf node has format: <P, <K;, Pd;>, P,, <K;, Pd,>, ... <K,, Pd>,
P> with g < 2k. P; is tree pointer: points to another node in the tree.
This node is the root of the subtree that P, refers to. Every Pd. is a
data pointer: it points to record with key value K;, or to disk block that
contains it.

B-tree is a balanced tree. Every path from root of to any leaf has same
length (height of B-tree). Leaf nodes have same structure as non-leaf
nodes, except that all their tree pointers P, are null.
within a node: K; <K, < ... <K,
for every key value X in subtree referred to by P.:

* Ki<X<K,,forO<i<q

e X<K,,fori=0

* K. <Xfori=q

B-trees

* A B-tree of order k holds the following properties (contd.):

— B-tree’s root node has a number of key values, and equal number of data
pointers between 1 and 2k. Number of tree pointers and child nodes varies

between 2 and 2k+1.

— all internal nodes have number of key values and data pointers between k
and 2k. Number of tree pointers and child nodes varies between k+1 and
2k+1.

— every leaf has a number of key values and data pointers between k and 2k
and no tree pointers
* Ifindexed search key is non-unique, a level of indirection is
introduced (e.g., inverted file approach)

— data pointers Pd, then point to block containing pointers to all records
satisfying search key value K.

B-trees

Order 1 (height = 3):

Order 2 (height = 2):

Order 3 (height=2):

20 °
fﬂ. 8/.16.\ .\28 °
[\ \.\
7 1112 | |17
312 .\240\ o o
31718 |11(|16]17 |20 26 |28 | 30
0\17 ® o o o o o
e
718 (11|12 |16 20124 (262830

B-trees

* B-tree is searched recursively starting from the
root

— if desired key value X is found in a node (say K, = X),
then corresponding data record(s) can be accessed by
following Pd.

— if desired value is not found in node, the subtree
pointer P, to be followed is the one corresponding to
the smallest value of i for which X< K.,,. If X>all K
then the tree pointer P, is followed

* Note: fan-out and search efficiency is much higher
than with binary search!

B-trees

Capacity of node equals the size of a disk bock

All nodes, except for the root, are filled for at least 50%
— impact on additions and removals

Complex to make exact predictions about required
number of block accesses when searching B-tree

B-trees can also be used as primary file organization
technique

— instead of data pointers, nodes contain actual data fields of
records that correspond to search key values

B*-trees

* In a B*-tree
— only leaf nodes contain data pointers

— all key values that exist in non-leaf nodes are repeated
in leaf nodes, such that every key value occurs in a leaf
node, along with corresponding data pointer

— higher-level nodes only contain subset of key values
present in leaf nodes

— every leaf node of a B*-tree also has one tree pointer,
pointing to its next sibling

B*-trees

Order 1 (height = 3):

Order 2 (height = 2):

Order 3 (height = 2):

28

30

ﬁ—-o 8/.12 o 0\24 @ o 0\28* °
7 8 |11 12 | 16 17 | 20 24 26
A N N W) N |\
) 12 .\24 o o o
3 8 (1112|1617 20| |24|26|28 |30
N I\
. 17 ¢ o 0o o o 0
3117 11|12 |16 17120(24 (26|28 | 30

B*-trees

e Searching and updating B*-tree is similar as B-tree

e B*-trees are often more efficient, because non-leaf
nodes do not contain data pointers

— height of B*-tree is often smaller, resulting in less block
accesses to search

e Variations on fill factor which is 50% for standard
B-trees and B*-trees

— E.g., a B-tree with fill factor of 2/3 is called a B*-tree

Conclusions

e Storage Hardware and Physical Database Design
* Record Organization
* File Organization

More information?

- W
(! Ll { E

JUMP INTU 14HE E% _ VING‘IURL

e S .
N SN

OFDATABASE MA GEME»

Princigles of Database,
manqement information to

bdse design"and modeling, database systems; data storage, and the'evolving world
of data warehoising, governance and more. Designed for those studying datal
management for information management or computer science, this illustrates
textbook has a we" ba[anced theory practice focus and covers the essential tapics,
from blished ies up to recent trends like Big Data, NoSQL, and
analytics. On-going case studies, drill-down boxes that reveal deeper insights on key
topics, retention questions at the end of every section of a chapter, and connections
boxes that show the relationship b hroughout the text are included to
provide the practical tools to get started in database management.

with the

KEY FEATURES INCLUDE:
* Full-color illustrations throughout the text.

* Extensive coverage of important trending topics, including data warehousing, business
intelligence, data integration, data quality, data governance, Big Data and analytics.

An online playground with diverse environments, including MySQL for querying;
MongoDB; Neodj Cypher; and a tree structure visualization environment.

Hundreds of examples to illustrate and clarify the concepts discussed that can be
reproduced on the book’s companion online playground.

Case studies, review questions, problems and exercises in every chapter.

Additional cases, p: and it in the di

Online Resources
www.cambridge.org/

Instructor’s resources

M Solutions manual
M Code and data for examples

Cover illustration: @Chen Hanquan / DigitalVision / Getty lmages.
Cover design: Andrew Ward.

9"781107"186125

il)
1d and apply the fund: | col -

>

SN3S3 V8 ONY
T3IHYIWAT

I1IN0YE NIONYA

|

bl

<2
O
—
m
w
o)
M

INIWIIVNVIN 3SVE

.

WILFRIED LEMAHIEU
SEPPE VANDEN BROUCKE
BART BAESENS

PRINCIPLES OF
DATABASE

MANAGEMENT

THE PRACTICAL GUIDE TO STORING. MANAGING
AND ANALYZING BIG AND SMALL DAT&

www.pdbmbook.co

http://www.pdbmbook.com/

